Project Management

Software development
models & methodologies

neil@minkley.fr

Project life cycle

Advisability
study

Feasibility Business
study case

Execution Closure

B roject supervision
Bcreauie. B ar implementation
B o D rements IR rocuct creation
B oroduct launch

Charter Planning

Product creation phases

Content
creation Integration Testing &
Software Acceptance
coding

Requirements Deployment

Project plan

Lk

Product creation

|—> Product launch

Software development phases

Testing &

Requirements Acceptance

Integration Deployment

Software
coding

Product creation

| Product creation
B P roact inuncn |

Software development life cycle models

Testing &

Acceptance Deployment

Integration

Requirements Software

coding

> Waterfall model
> Incremental model
> V model

> Spiral model

> Agile software development

> XP (eXtreme Programming)

Waterfall model

Requirements

System design

Unit design

Implementation
& Unit testing

Integration
& System testing

Operation

Incremental model

Requirements

System design

Unit design

Implementation
& Unit testing

Integration
& System testing

Operation

V model

- Acceptance
Acceptance
Requirements test plan testing
- Integration Integration
System design test plan & System testing
- - Unit - -
Unit design tost p'lan Unit testing

Implementation

Spiral model

/

Requirements

Risk analysis

NN

Prototyping

|/

Coding
Customer evaluation /

Testing

Questions?

Agile software development (1)

Testing &
Acceptance

Requirements Integration Deployment

Software
coding

> Flexibility

Agile

> Interactivity Alliance
> 10 key principles

Agile software development (2)

Testing &

Requirements Acceptance

Integration Deployment

Software
coding

> Actively involve users

Agile

> Empower development team to Alliance
make decisions

Agile software development (3)

Testing &
Acceptance

Requirements Integration Deployment

Software
coding

> Allow requirements to evolve but AGil
keep timescale fixed gie

Alliance

> Capture requirements at highest
level of description

Agile software development (4)

Testing &

Acceptance Deployment

Integration

Requirements

Software
coding

> Develop small incremental releases,
and iterate

Agile

Alliance

> Make frequent delivery of product
(to test...)

> Complete a feature before moving
on to the next

Agile software development (5)

Testing &
Acceptance

Requirements Software Integration Deployment

coding

» Apply the “80/20 rule” (Pareto’s principle) Agile

> Integrate testing throughout the project \liE]sls=
life cycle

> Rely on collaborative approach between
stakeholders

Questions?

XP: eXtreme Programming (1)

Content
creation Integration Testing &
Software Acceptance
coding

Requirements Deployment

XP Practices

> Communication

> S Im p I 19 ty Collective Coding
Ownership Test-Driven Otandard
> F ee d b daC k / Development \
Customet Pair F’-c-fat.i\oring Planning
Tests Programming I Game
> Courage 2 ,.

\ Simple //
Design

Continuous
ln‘ie-g ration

Sustainable
Pace

Metaphor

Small

F’-Q.h.ase.s we X Pro granmiing.com

XP: eXtreme Programming (2)

Testing &
Acceptance

Requirements Integration Deployment

Software
coding

Wh0|e team: XP Practices ,,m';\

> all contributors to the project form \
a single team, including at least one ES |
business/user representative /

Planriing

\
I .
miing Fl—fat?nng Game

XP: eXtreme Programming (3)

Testing &

Requirements Acceptance

Integration Deployment

Software
coding

Planning game: \

Collective Coding

> steer the project rather than

~ Development
' 4 N\

exactly predict what needs to be - ?Lifjm_g A
done and how long it will take:

v Release planning:
due dates for deliverables
v Iteration planning:
direction regularly adjusted

XP: eXtreme Programming (4)

Testing &
Acceptance

Requirements Integration Deployment

Software
coding

Simple design: \

> always match required functionality \

i ; 1\ . Planriing
niniitia ikl “,m“g Guame

> do not waste time on features not N\ e oo /
really needed

XP: eXtreme Programming (5)

Testing &
Acceptance

Requirements Integration Deployment

Software
coding

Metaphor: \

> describes in very simple and o:.,::;“::; o \

~ Development
/ i)

i v Planting
p— Fl.fac‘!?ntlg Liaie

evocative terms how the software ik wrN
should work /

> requires agreed-upon vocabulary

XP: eXtreme Programming (6)

Testing &
Acceptance

Requirements Integration Deployment

Software
coding

Refactoring: \

> continuous process of design = \
improvement o I miniitig Ft—fat:?ring . /(mu
> focuses on avoiding duplication and -

achieving full “cohesion” of the
code

XP: eXtreme Programming (7)

Testing &
Acceptance

Requirements Integration Deployment

Software
coding

Continuous integration: \

> system kept “fully integrated” at all \
stages of development in order to
maintain its cohesion

Planriing

\
] i
p— Fl.fac‘!?ntlg Liaie

e " Sustainable

> system builds produced on a very
frequent basis

XP: eXtreme Programming (8)

Testing &
Acceptance

Requirements Integration Deployment

Software
coding

Small releases: \

> working version of software \
delivered to customer after each Al B
iteration /

> may even be put into operation for
maximum feedback

XP: eXtreme Programming (9)

Testing &
Acceptance

Requirements Integration Deployment

Software
coding

Customer tests: \

> performed for each “small release” \
of software, preferably with |
automatic acceptance programs /

Planriing

\
] i
p— Fl.fac‘!?ntlg Liaie

XP: eXtreme Programming (10)

Testing &

Requirements Acceptance

Integration Deployment

Software
coding

Test-driven development:

> systematic unit tests, with full
coverage of features developed

> as the system grows, so does the
number of unit tests which need
to be run successfully

> feedback from tests drives further
development work

XP: eXtreme Programming (11)

Testing &

Requirements Acceptance

Integration Deployment

Software
coding

Coding standard:

> code written by any member of o o] S |\
the development team complies w ?liffmm_e yh s
with a general, unique standard /

> ensures cohesion of the system
and facilitates code maintenance

XP: eXtreme Programming (12)

. 5 Testing &
Requirements “Software | Integration Acceptance

coding

Deployment

Pair programming:

> each software unit is developed o \
by two programmers working N A
together, to produce better code /

than would two programmers
working singly

XP: eXtreme Programming (13)

Testing &
Acceptance

Requirements Integration Deployment

Software
coding

Collective ownership: XPPracm%m\

> code produced by programmers is
owned by all members of the - ::‘ff'"“"?,,,
development team o /

> each person pays attention to code
written by others and contributes to
improving its quality

XP: eXtreme Programming (14)

Testing &

Requirements Acceptance

Integration Deployment

Software
coding

Sustainable pace: \

> developers should work with oy o i
maximum productivity at a T
sustainable pace, avoiding

“burn-out”...

v easier said than done!

Questions?

