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Software development life cycle models
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> Waterfall model
> Incremental model
> V model

> Spiral model

> Agile software development

> XP (eXtreme Programming)
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Spiral model
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Agile software development (1)
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> Flexibility

Agile

> Interactivity Alliance
> 10 key principles




Agile software development (2)
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> Actively involve users

Agile

> Empower development team to Alliance
make decisions




Agile software development (3)
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> Allow requirements to evolve but AGil
keep timescale fixed gie

Alliance

> Capture requirements at highest
level of description



Agile software development (4)
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> Develop small incremental releases,
and iterate

Agile

Alliance

> Make frequent delivery of product
(to test...)

> Complete a feature before moving
on to the next



Agile software development (5)
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» Apply the “80/20 rule” (Pareto’s principle) Agile

> Integrate testing throughout the project \liE]sls=
life cycle

> Rely on collaborative approach between
stakeholders
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XP: eXtreme Programming (1)
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XP: eXtreme Programming (2)
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Wh0|e team: XP Practices ,,m';\

> all contributors to the project form \
a single team, including at least one ES |
business/user representative /
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XP: eXtreme Programming (3)
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Planning game: \

Collective Coding

> steer the project rather than

~ Development
' 4 N\

exactly predict what needs to be - ?Lifjm_g A
done and how long it will take:

v Release planning:
due dates for deliverables
v Iteration planning:
direction regularly adjusted



XP: eXtreme Programming (4)
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Simple design: \

> always match required functionality \

i ; 1\ . Planriing
niniitia ikl “,m“g Guame

> do not waste time on features not N\ e oo /
really needed




XP: eXtreme Programming (5)
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Metaphor: \

> describes in very simple and o:.,::;“::; o \

~ Development
/ i )

i v Planting
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evocative terms how the software ik wrN
should work /

> requires agreed-upon vocabulary



XP: eXtreme Programming (6)
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Refactoring: \

> continuous process of design = \
improvement o I miniitig Ft—fat:?ring . /(mu
> focuses on avoiding duplication and -

achieving full “cohesion” of the
code



XP: eXtreme Programming (7)
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Continuous integration: \

> system kept “fully integrated” at all \
stages of development in order to
maintain its cohesion

Planriing

\
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e " Sustainable

> system builds produced on a very
frequent basis



XP: eXtreme Programming (8)
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Small releases: \

> working version of software \
delivered to customer after each Al B
iteration /

> may even be put into operation for
maximum feedback



XP: eXtreme Programming (9)

Testing &
Acceptance

Requirements Integration Deployment

Software
coding

Customer tests: \

> performed for each “small release” \
of software, preferably with |
automatic acceptance programs /

Planriing
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XP: eXtreme Programming (10)
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Test-driven development:

> systematic unit tests, with full
coverage of features developed

> as the system grows, so does the
number of unit tests which need
to be run successfully

> feedback from tests drives further
development work



XP: eXtreme Programming (11)

Testing &

Requirements Acceptance

Integration Deployment

Software
coding

Coding standard:

> code written by any member of o o] S |\
the development team complies w ?liffmm_e yh s
with a general, unique standard /

> ensures cohesion of the system
and facilitates code maintenance



XP: eXtreme Programming (12)

. 5 Testing &
Requirements “Software | Integration Acceptance

coding

Deployment

Pair programming:

> each software unit is developed o \
by two programmers working N A
together, to produce better code /

than would two programmers
working singly



XP: eXtreme Programming (13)
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Collective ownership: XPPracm%m\

> code produced by programmers is
owned by all members of the - ::‘ff'"“"?,,,
development team o /

> each person pays attention to code
written by others and contributes to
improving its quality



XP: eXtreme Programming (14)
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Sustainable pace: \

> developers should work with oy o i
maximum productivity at a T
sustainable pace, avoiding

“burn-out”...

v easier said than done!
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