
Project Management 

Software development 
models & methodologies 

neil@minkley.fr 



Project life cycle 

Business 
case 

Advisability 
study 

Feasibility 
study 

Execution Closure Planning 

Plan implementation 

Product creation 

Project supervision 

Requirements 

Charter 

Scope 

Schedule 

Budget 

Product launch 

Project plan 



Product creation phases 

Business 
case 

Advisability 
study 

Feasibility 
study 

Execution Closure Planning 

Plan implementation 

Product creation 

Project supervision 

Requirements 

Charter 

Scope 

Schedule 

Budget 

Product launch 

Project plan 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 



Software development phases 

Business 
case 

Advisability 
study 

Feasibility 
study 

Execution Closure Planning 

Plan implementation 

Product creation 

Project supervision 

Requirements 

Charter 

Scope 

Schedule 

Budget 

Product launch 

Project plan 

Requirements Integration Design 
Testing & 

Acceptance 

Content 
creation  
Software 
coding 

Deployment 



Software development life cycle models 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 

 Waterfall model 

 Incremental model 

 V model 

 Spiral model 

 Agile software development 

 XP (eXtreme Programming) 



Waterfall model 

Requirements 

System design 

Unit design 

Implementation 
& Unit testing 

Integration 
& System testing 

Operation 



Incremental model 

Requirements 

System design 

Unit design 

Implementation 
& Unit testing 

Integration 
& System testing 

Operation 



V model 

Requirements 

System design 

Unit design 

Implementation 

Integration 
& System testing 

Acceptance 
testing 

Unit testing 

Acceptance 
test plan 

Integration 
test plan 

Unit 
test plan 



Spiral model 

Requirements 

Risk analysis 

Prototyping 

Coding 

Testing 

Customer evaluation 



Questions? 



Agile software development (1) 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 

 Flexibility 

 Interactivity 

 10 key principles 



Agile software development (2) 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 

 Actively involve users 

 Empower development team to 

make decisions 



Agile software development (3) 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 

 Allow requirements to evolve but 

keep timescale fixed 

 Capture requirements at highest 

level of description 



Agile software development (4) 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 

 Develop small incremental releases, 

and iterate 

 Make frequent delivery of product 

(to test…) 

 Complete a feature before moving 

on to the next 



Agile software development (5) 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 

 Apply the “80/20 rule” (Pareto’s principle) 

 Integrate testing throughout the project 

life cycle 

 Rely on collaborative approach between 

stakeholders 



Questions? 



XP: eXtreme Programming (1) 

 Communication 

 Simplicity 

 Feedback 

 Courage 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 



XP: eXtreme Programming (2) 

Whole team: 

 all contributors to the project form 

a single team, including at least one 

business/user representative 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 



XP: eXtreme Programming (3) 

Planning game: 

 steer the project rather than 

exactly predict what needs to be 

done and how long it will take: 

Release planning: 

due dates for deliverables 

 Iteration planning: 

direction regularly adjusted 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 



XP: eXtreme Programming (4) 

Simple design: 

 always match required functionality 

do not waste time on features not 

really needed 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 



XP: eXtreme Programming (5) 

Metaphor: 

describes in very simple and 

evocative terms how the software 

should work 

 requires agreed-upon vocabulary 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 



XP: eXtreme Programming (6) 

Refactoring: 

 continuous process of design 

improvement  

 focuses on avoiding duplication and 

achieving full “cohesion” of the 

code 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 



XP: eXtreme Programming (7) 

Continuous integration: 

 system kept “fully integrated” at all 

stages of development in order to 

maintain its cohesion  

 system builds produced on a very 

frequent basis 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 



XP: eXtreme Programming (8) 

Small releases: 

working version of software 

delivered to customer after each 

iteration 

may even be put into operation for 

maximum feedback 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 



XP: eXtreme Programming (9) 

Customer tests: 

performed for each “small release” 

of software, preferably with 

automatic acceptance programs 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 



XP: eXtreme Programming (10) 

Test-driven development: 

 systematic unit tests, with full 

coverage of features developed 

 as the system grows, so does the 

number of unit tests which need 

to be run successfully 

 feedback from tests drives further 

development work 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 



XP: eXtreme Programming (11) 

Coding standard: 

 code written by any member of 

the development team complies 

with a general, unique standard  

 ensures cohesion of the system 

and facilitates code maintenance 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 



XP: eXtreme Programming (12) 

Pair programming: 

 each software unit is developed 

by two programmers working 

together, to produce better code 

than would two programmers 

working singly 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 



XP: eXtreme Programming (13) 

Collective ownership: 

 code produced by programmers is 

owned by all members of the 

development team  

 each person pays attention to code 

written by others and contributes to 

improving its quality 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 



XP: eXtreme Programming (14) 

Sustainable pace: 

developers should work with 

maximum productivity at a 

sustainable pace, avoiding 

“burn-out”... 

 easier said than done! 

Requirements Integration Design 
Testing & 

Acceptance 
Deployment 

Content 
creation  
Software 
coding 



Questions? 


